ALGEBRA II, $2^{\text {ND }}$ EDITION - ON-LINE TEST 26 REVISED: SEPTEMBER 2006

(This test covers material up to Lesson 104. Take this test after completion of Lesson 108.)

1. Solve for x and $y: \begin{aligned} & 5 x-3 y=135 \\ & 3 x-5 y=-15\end{aligned}$ Then evaluate: $(x-y) y=$
(A) 6
(B) -78
(C) -700
(D) 450
(E) none of these
2. Find the number that is $\frac{3}{4}$ of the way from $3 \frac{1}{5}$ to $5 \frac{2}{3}$.
(A) $\frac{101}{20}$
(B) $\frac{37}{15}$
(C) $4 \frac{17}{20}$
(D) $\frac{37}{20}$
(E) none of these
3. Which equation is graphed on the number line at right?

(A) $|\mathrm{x}| \leq 3$
(B) $-3>|x|>3$
(C) $-|x|-2<-5$
(D) $|\mathrm{x}|+3<6$
(E) none of these
4. What is the axis of symmetry for the graph of $y=x^{2}+6 x+5$?
(A) $x=-3$
(B) $y=-4$
(C) $x=-5$
(D) $y=-1$
(E) none of these
5. The dealer purchased an item, marked it up (increased its price), and sold it to a customer for $\$ 560$. If the markup was 40% of the dealer's purchase price, what did the dealer pay for the item?
(A) $\$ 224$
(B) $\$ 784$
(C) $\$ 160$
(D) $\$ 336$
(E) none of these
6. Find $f g(7)$ if $f(x)=x+4 ; D=\{$ Reals $\}$ and $g(x)=x^{2}+4 ; D=\{$ Positive integers $\}$.
(A) 583
(B) 64
(C) 125
(D) \varnothing
(E) none of these
7. Divide $64 x^{3}-27 y^{3}$ by $4 x-3 y$
(A) $16 x^{2}-9 y^{2}$
(B) $16 x^{2}+9 y^{2}$
(C) $16 x^{2}-48 x^{2} y+12 x y-36 x y^{2}+9 y^{2}$
(D) $(4 x-3 y)^{2}$
(E) none of these
8. Show that 0.00000403 is a rational number by writing it as a fraction of integers.
4.03
403
(C) $\frac{403}{100000000}$
(D) $\frac{403}{1000000000}$
(E) none of these
9. What is the y-coordinate of the vertex in the graph of $y=x^{2}-16 x+45$
(A) 45
(B) 109
(C) -19
(D) -45
(E) none of these
10. If $f(x)=x^{2}+3 x$, find $f(-3)$ for the Domain $=\{$ Positive Integers $\}$.
(A) 0
(B) 18
(C) 27
(D) \varnothing
(E) none of these
11. Simplify:

$$
\frac{a}{b^{2} a-\frac{2 a}{b+\frac{1}{b}}}
$$

(A) $\frac{1}{b^{2}-2 a b^{3}}$
(B) $\frac{b(1+b)}{-2+b^{3}+b^{4}}$
(C) $\frac{1+b^{2}}{-2 b+b^{2}+b^{4}}$
(D) $\frac{b^{2}+1}{b^{3}-2 b}$
(E) none of these
12. Find the perimeter of this triangle.
(A) 32
(B) 23
(C) $(2,5)$
(D) 30
(E) none of these

13. Write $1.14 \overline{504}$ as a fraction of integers
(A) $\frac{11431}{900}$
(B) 100000
(C) $\frac{11439}{9990}$
(D) $\frac{1261}{1110}$
(E) none of these
14. Simplify: $\frac{4 i+i^{2}}{-i^{3}+2}$
(A) $\frac{6}{5}+\frac{7 i}{5}$
(B) $\frac{2}{5}+\frac{9 i}{5}$
(C) $-\frac{6}{5}+\frac{7 i}{5}$
(D) $\frac{4}{3}+\frac{i}{3}$
(E) none of these
15. Find a: $\quad c\left(\frac{z+y}{b}-\frac{1}{a}\right)=x$
(A) $\frac{b}{y+z}-\frac{x}{c}$
(B) $\frac{b c+x}{c y+c z}$
(C) $\frac{b}{-b x c+y+z}$
(D) $-\frac{b c}{b x-c y-c z}$
(E) none of these
16. A dealer purchased an item for $\$ 120$. He then marked it up (increased its price) and sold it to a customer. If the markup was 30% of the selling price, what was the selling price?
(A) $\$ 160$
(B) $\$ 156$
(C) $\$ 171.43$
(D) $\$ 204$
(E) none of these
17. Simplify: $\sqrt[5]{27 \sqrt[3]{9}}$
(A) $3^{\frac{1}{3}}$
(B) $3^{\frac{4}{5}}$
(C) 3
(D) $3^{\frac{6}{75}}$
(E) none of these
18. Joe thought of three consecutive multiples of seven such that the sum of the first and third is twenty-eight less than three times the second.
(A) 3, 4, 5
(B) $-35,-28,-21$
(C) $-7,0,7$
(D) $21,28,35$
(E) none of these
19. Divide $125 y^{3}+8 x^{3}$ by $2 x+5 y$
(A) \varnothing
(B) $4 x^{2}+25 y^{2}$
(C) $(2 x+5 y)^{2}$
(D) $4 x^{2}-10 x y+25 y^{2}$
(E) none of these
20. Simplify: $\frac{\left(y^{3 b+3}\right)^{m}}{y^{\frac{m}{3}}}$
(A) $\mathrm{y}^{\frac{8 m}{3}+3 \mathrm{bm}}$
(B) $\mathrm{y}^{\frac{9 \mathrm{~b}}{\mathrm{~m}}+9}$
(C) $\mathrm{y}^{\mathrm{b}+1}$
(D) $y^{3 b+\frac{8 m}{3}}$
(E) none of these

